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In quantum statistical mechanics, the Green's function formalism provides an ex- 
pression for the density of a fluid as a four-dimensional momentum-energy integral 
over the spectral function. This function can be expressed in terms of the complex 
self-energy of the single-particle excited states. By using the "ladder diagram" approxi- 
mation, in a low activity limit at which Fermi-Dirac and Bose-Einstein distributions 
can be approximated by a Boltzmann distribution, the self-energy has been expressed 
in terms of the two-body scattering amplitude. Density and pressure can then be 
expressed in terms of the activity, the temperature, and the two-body scattering phase 
shifts. A complete numerical evaluation of these results has been made for the case 
of argon at 100~ represented by a hard-sphere plus square-well potential: results 
are presented for the complex self-energy, the density, and the pressure as a function 
of activity. The resulting equation of state is compared to experimental results represent- 
ed by the Beattie-Bridgeman equation and good agreement is found for the gaseous 
part of the 100~ isotherm. Furthermore, two simple analytic equations of state are 
derived from these expressions with additional (low-density) approximations, which 
resemble closely some of the equations obtained from the lattice gas theories. 

KEY W O R D S :  Thermodynamic Green's functions; spectral function; self-energy; 
T-matrix; square-well potential; quasiparticles; lattice gas theories. 

1. I N T R O D U C T I O N  

T h e r e  are  several  m e t h o d s  ava i lab le  fo r  m a k i n g  theo re t i ca l  ca lcu la t ions  and  pred ic-  

t ions  fo r  the  e q u a t i o n  o f  s ta te  o f  fluids, especia l ly  the  n o n c o n d u c t i n g  fluids. (1,~) 
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Thus, one might well ask why one should try and use another method for this purpose. 
Two areas for improvement (particularly with respect to theories based on the pair 
distribution function) have been suggestedl2.'~): (1) the poor predictions given by 
these calculations at low temperatures (well below the critical temperature T~), and 
(2) the intuitive nature of some of the approximations made to  obtain the pair 
distribution function (as, for instance, in the "superposition" approximation.) It is 
our purpose here to improve on these two points, particularly on the first one. 

The theoretical scheme which has been used here for the nonconducting fluids 
is based on one of the methods suggested by Kadanoff and Baym (a) for obtaining 
the equation of state from the thermodynamic Green's functions. (~) Basically, 
it involves expressing the density, through the spectral relations, in terms of the 
chemical potential/z and temperature T, through the use of the one-particle tempera- 
ture Green's function. The pressure is then obtained by integrating the thermo- 
dynamic identity d P  = n dl~ (at constant temperature and volume). This was done 
here for the specific model or approximation of the low-activity, T-matrix approxima- 
tion, 2 which is proposed for short-range intermolecular potentials and for fluids 
of molecules obeying Boltzmann statistics. Briefly, the T-matrix approximation 
includes the effect on the one-particle Green's function or propagator of the n-body 
collisions made of successive two-body interactions (hence, the name "ladder approxi- 
mation"). This, unfortunately, stills leads to highly complicated, coupled integral 
equations for the Green's function and the T-matrix for realistic intermolecular 
potentials. So, an additional approximation, i.e., of low activity, is made to obtain 
the self-energy to first order in the activity z = e ./kr. This, effectively, reduces the 
self-energy to two-body collisions. The Green's function (and the density) still contains 
all powers of the activity and the number of collisions, but an error is of course made 
for higher orders than the second order in z (for the density.) The activity z is known 
to be small (compared to unity) for all inert gases (except for helium near the 
A-point). (6~ The low-activity limit also replaces the true statistics by the Boltzmann 
statistics and thus neglects all symmetry effects. All other quantum effects are, however, 
retained in our results. The symmetry effects occur only at very low temperatures, 
thus probably only for helium near the A-point. The low-activity approximation 
also replaces the T-matrix by the usual two-body scattering amplitude and the self- 
energy function becomes the Boltzmann average of the scattering amplitude for zero 
and 7r angles. 

A complete numerical calculation is then carried out for the density in terms of 
temperature and activity, for a solvable case, i.e., a hard-sphere plus square-well 
potential fitted to the second virial coefficient of argon. This potential represents 
quite well the properties of argon and is much simpler to handle than a Lennard-Jones 
potential. The pressure is then obtained at T = 100~ by integrating the relation 
d P  ~-  n dtz  -~ K T n ( z )  d z / z .  Both parts (real and imaginary) of the self-energy are 
calculated and used in the density and pressure calculations. The imaginary part is 
found to have the correct asymptotic behavior and affects the density-pressure 
calculations quite strongly. The numerical pressure-density results are then compared 

See Kadanoff and Baym, (~) Chapter 13. 
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to the experimental Beattie-Bridgeman equation of state for gaseous argon at 
T = 100~ The agreement is excellent for the low-density portion of the curve and 
the calculated curve shows the proper behavior for the gaseous portion of the isotherm. 
The disagreement reaches about 9.2 ~ for the highest densities calculated. 

2. F O R M U L A T I O N  O F  T H E  P R O B L E M  

The theory of Green's functions at finite temperature is now well established. 14m 
Let us specify the notations used here. We first define the n-particle Green's function 
in terms of the field operators for the particles as m 

G,(1, 2 ..... n; 1', 2',..., n') = (--i)n(T,~b(1) ~b(2) -.. ~b(n) ~b+(n ') -.. ~b*(l')) (1) 

where j = 1, 2,..., n stands for (r~., rj), r~ = its is a real variable running from zero to 
t3 = (kT) -1, t~ is the imaginary time, and TT is the ordinary r-ordering operator. I f  
the system is transitionally invariant, the Green's functions can be expanded as usual 
in Fourier series, for instance, 

with 

a , (1  - 13 = (i/5) Y~ exp [-- i~%(r,  - -  %,)] 

• f [dap/(2rr)a]exp [ip" (r~ -- r,,)] G(p, a)~) (2) 

c% = (2p q- 1) rr/13 (FD statistics) 

= 2prr/13 (BE statistics) 

where p is an integer. For a fluid of particles interacting through a two-body potential 
v(r), the second-quantized Hamiltonian 

H = f dar ~b*(r)(--V2/2m ) ~b(r) 

q- �89 f dar dar ' ~b*(r) ~bt(r ') v(t r -- r' l) ~b(r') ~b(r) (3) 

The potential v(r) in Eq. (3) is a typical intermolecular potential, such as the Lennard- 
Jones potential. 

For the ideal gas (v-----0), the Fourier transform of the one-particle Green's 
function in Eq. (2) is 

Gl~ oo~) = [i%, + t~ - -  (p2/2m)]- i  (4) 

where /~ is the chemical potential. In general, G(p, o~) is expressed in terms of the 
irreducible self-energy Z'(p, ioJ~), (4,7) 

G(p, ~%) = Gm)(p, co~)/[1 -- X(p, iw~) Gm)(p, ~%)] 
(5) 

= [ie% + I ~ - -  (p2/2m) - -  X(p, i~%)]-* 
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G(p, oJ~) can be analytically continued in the upper half-plane of o~, from the 
points o~ = ic%, to yield the retarded Green's function. r Similarly, it can be 
continued in the lower half-plane of m. The spectral function is defined by <4) 

A(p, a,) = --2 Im[G(p, ~)1~,%_,~,+~ 

--2 Im Z(p, ~ + ie) 
[~o + i x --  (p2/2m) --  Re Z'(p, co 4- ie)] 2 -k [Ira Z'(p, o) 4- ie)] 2 

(6) 

In the last line of Eq. (6), ic% has been replaced by (~o 4- ie), where ~o is a real frequency 
and E is a real, positive infinitesimal. The equations (1)-(6) have been written for 
the case in which the Heisenberg representation of the field operators is with respect 
to ~ = H --/xN, where H is the Hamiltonian of Eq. (3) and N is the operator for 
the total number of particles. 

Through the use of the spectral relations, (4,7,s) we obtain immediately an 
expression for the ensemble average of the number density as a particular value of 
the corresponding real-time correlation function 

n = <r t) r t ) )  = f - ~ - ~ ) 3 f  d~p doJ2~r e~  =t= 1 A ( P '  c9) (7) 

where in this case t is the real time and the upper sig n refers to BE statistics and the 
lower to FD statistics. In a spatially homogeneous system, the average number 
density n is independent of the position and time variables? Equations (6) and (7) give 
a relationship connecting the density, chemical potential, and temperature of the 
system. A differential equation of state (4) relating dn and dP (P is the pressure) at 
constant temperature can be obtained from these equations and the thermodynamic 
identity dP = n dlx, provided we find, in a suitable approximation, an explicity 
expression for the self-energy in terms of these parameters. 

3. T H E  E Q U A T I O N  OF STATE I N  T H E  T - A P P R O X I H A T I O N  

The only unknown in Eqs. (6) and (7) is the self-energy function, for which we 
now choose a realistic approximation, namely the T- or reaction-matrix approxi- 
mation, as developed for finite temperatures by Kadanoff and Baym (4) (see their 
Chapter 13). This approximation introduces correlations between the (propagating) 
particles represented by the two-particle Green's function and is not restricted to a 
"weak" force. It is thus possible to carry out a calculation for the self-energy in 
which the strong but short-range interaction between any two particles is taken into 
account. 

We shall further use the limiting case in which the Bose-Einstein and Fermi-Dirac 
distributions each go over to the Boltzmann distribution: this is obtained formally (4) 

This usual assumption of translational invariance probably excludes the possible coexistence of 
two phases. 
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by letting fi/, go to - - m  or e ~ go to zero. (6) Since z = e ~" is the activity, we shall call 
this further approximation the low-activity case. 

We rewrite Kadanoff and Baym's equations for the self-energy in Fourier space 
as follows: 

+ m  

s(p,  io.~) = :F5 -1 y, ~ [a%/(2~)q c ( p l ,  o,~) 
]g=--eo 

• [<~(p - p01 T@ + Pl ,  io,. + i~o~)l ~(p -- Pl)> 

=[= (�89 - -  Pl) I T(p q- p~,  ioJ~ q- io~)  l �89 - -  p)>] (8)  

where the T-matrix represents the sum of all ladder diagrams and is given (in the 
limit fi/,--> --oo) by the following integral equation: 

<p] T(P, i~%)1 P'> : v(p - -  p') 

q- f [dap/(2~r)aj(p I T(P, i%,)I f~> v(f~ --  p') 

• [ic% + 2/, - -  (P2/4m) --  (ff2/m)]-I (9) 

In Eq. (9), e% = 2pTr/fi (p  an integer), 

v(p) = f dar[exp(--ip �9 r)] v(r) 

and P is the center-of-mass momentum of  the two interacting particles. We recall 
here (4,7) that the T-matrix is the analytic continuation of the usual two-body scattering 
amplitude where the kinetic energy of relative motion (p2/m) is replaced by 
(ioo~ + 2 / * -  P2/4m). Hence, when T is analytically continued from the points 
w = i~%, we have the analytic properties! 9) of T as a function of the complex 
variable co: the poles of T occur when (co q- 2/, -- P2/4m) is equal to the energy E~ 
of a bound state of the two-particle system and a branch point occurs at 
w = --21, q- (P2/4m) -? (r2/4rn), where x = p -- p'. 

We now turn to Eq. (8), where the summation over k is performed by contour 
integration in the complex plane 4 through the use of an auxiliary function which 
we choose, for BE statistics, to be 2rri(e i2~ --  1)-1: 

-l-co 

Z f (k )  = -- Z Res[2rr/f(z)( e/2~z -- 1) -1] 
/C~--ao 

at the poles o f f ( z )  (Res indicates "residues of"). This relation is valid only if the 
constraint I zf(z)[ -+ 0 as [ z ] -+ oo is satisfied. This is realized here because of the 
known properties of the scattering amplitude. I1~ We shall do the k summation in the 
limit fi/*---> --oo or to lowest order in e~: in this limit, we replace G in Eq. (8) by 

4 See Kadanoff and Baym, mp. 196. 
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G (~ defined in Eq. (4), because 27(p, imp) is at least m) of  first order  in e ~". In this limit, 
the k summat ion  becomes essentially 5 

[k(27ri/[3) - -  (pl~/2m) + i~] -1 T(iw~, § [2~ik/fi]) 
k~--ct3 

~ '  - - f i T ( k %  + [plZ/2m] - -  i~){exp[fl(pz2/2m) - -  /x] - -  1} -1 

- - f i {exp[- - f l (pz2 /2m)  - - /~]}  T(ico~, + [pz2/Zm] - -  t ~) (10) 

In  Eq. (10), we have neglected the residues at  the poles of  the T-matrix,  which are at  

ioJk = Ei - -  ic%, -~ [(p -t- pl)~/4m] - -  2/~. 

These residues are propor t ional  to e ~"  and are negligible (in the low-activity limit) 
compared  to the terms retained in Eq. (10). Similarly, the contr ibution f rom the 
branch-point  singularity is negligible in the same limit. Insert ing the expression (10) 
into Eq. (8), we obtain 

Z(p, [dapl/(27r)~][exp(--flpl~/2m)] 

• [(�89 - -  P0 [ T(p + P l ,  iw~ + [pl~/2m] - -  /~)[ �89 - -  Pl)) 

~: (�89 - -  P0[  T(p + p l ,  io3~ + [pz~/2m] - -  i~)l �89 - -  p))] (11) 

Now,  if we substitute Eq. (11) into Eq. (6) and the latter equat ion into Eq. (7), 
we obtain an equation of  state relating n, /~, and T which involves the T-matrix.  
Unfor tunate ly ,  the integral equat ion (9) for  the T-matr ix  is soluble only for  idealized 
interparticle potentials,  a2) However ,  we can use the limit as/3/z---> - -oo  to simplify 
our  equations. (m In  this limit, Z'(p, it%), which is propor t iona l  to z, will be small 
compared  to [(p2/2m) - - / x ]  in Eq. (5) and A(p, co) of  Eq. (6) will be peaked around 
w ~ ( p ~ / 2 m ) -  i~. So we shall evaluate 6 Z'(p, o ) +  ie) in Eqs. (5) and (6) at  the 
approx imate  peak  of  A(p, w) as a function of  co. In Eq. (6), 

X(p, o~ + i~) 

_~ Z ( p ,  [p~/2ml - -  t~ + &) 

= z f [d~p~/(2rr)~][exp(--fip~2/2m)] 

• [(�89 - -  P01 T(p -}- p~, [pe/2m] + [pz~/2m] - -  2/x q- &)l �89 - -  Pz)) 

(�89 - pl) I r ( p  + p~,  [p2/2m] + [p~/2m] -- 2~ + iE)l �89 - -  p)) ]  

= - -  (4~r/m)z f [d~pl/(2~r)3][exp(--fip12/2m)] 

• [f(~_w/~(O = o) :Sf(._,~)/~(O = ,~)1 

= z [Sa(p) - -  iSr(p)] (12) 

For FD statistics, this expression has the opposite sign. 
If one makes a Taylor expansion of Z(p, co) around co = (p~/2m) -- m one sees that the terms 
neglected in Eq. (12) are at least of order z ~. 
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where fp(0) is the ordinary scattering amplitude for outgoing waves. I1~) In Eq. (12), 
S R and S x are real-valued functions of p whose definitions are obvious. We note that 
S~(p) is positive-valued because it depends on Imfp(0), which by the optical theorem 
is equal to pa/47r > 0, where a is the total cross section. 

If we combine Eqs. (12), (6), and (7), we obtain easily 

dap ( dw zS~(p)(e ~ -T 1) -1 
n = 2 f - ( ~  J 2z: [oJ + i ~ -- (pg/2m) -- zSR(p)] 2 + [zSZ(p)] 2 

= 2 f d3p dco z~S~(p)(e ~ ~ z) < 
f 2~r [w -- (p2/2m) --  zSR(p)] 2 + [zSI(p)] 2 

(13) 

The second expression of Eq. (13) is obtained by the change of variable 
co + / z  --+ w. The expression (13) for the density is, as shown repeatedly in Kadanoff 
and Baym's treatise/4) of the general type expected: the total density is equal to the 
integral over momentum and energy of the product of the spectral function (or 
probability of occupation of mode co with momentum p) times the average occupation 
number of the mode co. The spectral function is here approximated by a Lorentzian 
distribution centered around the energy of the quasiparticles, with a width inversely 
proportional to the lifetime of the quasipartMes. This expression gives us, in principle, 
n as a function of z and T. To complete the equation-of-state formulation, we need 
an expression for the pressure P, which is obtained by integrating the thermodynamic 
identity n : (OP/et~)r,~ (-(2 is the volume) to yield 

f~ f~ P = n dl~' = K T  n(z') dz'/z' (14) 
o o 

We also need expressions for S R and S I, given by Eq. (12), which are suitable for 
numerical computations. The most useful ones are in terms of the two-body scattering 
phase shifts 3~. Thus, if we write a~) 

fp(O) = (2ip) -1 ~ ( 2 / +  1)[exp(2i3z) - -  11 Pz(cos O) 
l=O 

(15) 

we obtain 

s ~ ( p )  = - 

X 

X 

• 

8/(~rfip)[exp(--~p2/2m)] 

f ~  P' dp'[exp(--2flp'2/m)][sinh(2~pp'/m)] 

Re[f~,(0) • f~,(~)] 

(16/zr/3P)[exp(--~P~/2m)] Z ( 2 / +  1) 
l = e v e n  or  o d d  

f ~  dp'[exp(--2~P '2/m)][sinh(2fipp'/m)] 

(tan 3~)/(1 + tan ~ 8~). x (i6) 
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The summation over l runs, as usual, over even integers for BE statistics and over odd 
integers for FD statistics. Similarly, one obtains for the imaginary part 

SZ(p) = 16/(zrflp)[exp(--flp2/2m)] ~ ( 2 / +  1) 
~=even  o r  odd  

• f f  dp'[exp(--2fi p'2/m)][sinh(2~pp'/m)] 

x (tan ~ 3,)/(1 + tan 2 33 (17) 

All we need now are results for the scattering phase shifts to calculate S R, S ~, n, and P. 

4. D I S C U S S I O N  OF RESULTS FOR A R G O N  A T  100~ 

We spent a great deal of time trying to obtain analytic solutions of Eqs. (13) 
and (14) say in terms of the two-body scattering amplitude. Although it is possible 
to perform some of the integrals (in terms of semiinfinite series), it takes additional 
approximations to reduce this integral to a more tractable form. In Appendix A, 
we have used the zero-width approximation for the Lorentzian in Eq. (13) to get 
simpler results. If  one uses in addition a low-density approximation to eliminate 
the activity between Eqs. (13) and (14), one obtains essentially the analytic equations 
of state obtained by the simple lattice gas theories, i.e., the noninteracting lattice gas 
and the quasichemical equation. This is hardly very interesting, but it shows which 
simplifications to make in the exact Green's function theory to obtain simple results of 
the lattice gas model. Another analytic problem in Eqs. (13) and (14) is the elimination 
of the activity between these equations to obtain a closed equation between n and P. 
The same problem occurs in Mayer's (14~ classical theory of condensation and is 
solved by series expansion, which leads to the virial coefficient series. The virial 
coefficients of our Eqs. (13) and (14) will be examined similarly in a separate paper. 
At this point, we turn to "exact" numerical methods of solving Eqs. (13) and (14) 
without any further approximations. 

The set of equations (13), (14), (16), and (17) is all we need to solve the problem 
of the equation of state in the low-activity T-approximation. The scattering phase 
shifts 3~ were chosen according to a "square-well" potential (see Fig. 1) fitted to 
the second virial coefficient data of argon, with the parameters (1~) a = 3.16A, 
b = 5.85 A, and E/k = 69.4~ This potential is much easier to handle than a Lennard- 
Jones potential, for which the phase shifts can only be found by numerical methods. 
For the square-well potential, one finds, after a simple exercise in quantum mechanics, 

where 

tan 3~ = [pjz'(pb) --  wjt(pb)]/[pn{(pb) --  wzn,(pb)] (18) 

q[nz(qa) j((qb) -- jz(qa) n{(qb)] 
w~ ~- nz(qa) .j~(qb) --  jz(qa) nz(qb) 

q = ( p ~ +  me) 1/2, and j~ and nt are the two types of spherical Bessel function. 
In Eq. (18), we have continued using h = 1, but of course, for numerical calculations, 
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v(r) 

b 

Fig. I. A "square-well" intermolecular potential. 

one has to reintroduce the appropriate powers of h, in order to make, say, qa and pb 
dimensionless quantities. 

The real and imaginary parts S R and S I of the self-energy (per unit activity) 
were calculated on a digital computer for the above values of the potential parameters 
and for temperatures T = 85~ and 100~ In this calculation, we used a Chalk River 
subroutine to generate the spherical Bessel functions in Eq. (18) for all arguments 
and orders and we used the three-point Simpson's rule to evaluate Eqs. (16) and (17). 
The test to terminate the integrals was very stringent and the self-energy results are 
valid to at least four significant figures. The results are presented in Figs. 2 and 3. 
The real part S R shows some interesting features: the hard spheres contribute a 
positive and nearly constant self-energy for a large range of  momenta up to 
Y = (2/mkT)l/2p ~ 7. After this point, S R becomes negative (effect of attractive 
forces) and seems to continue oscillating for larger momenta. The addition of zS r~ 
to the kinetic energy p2/2m gives the spectrum of the quasiparticles in this approxi- 
mation: this spectrum has oscillations not unlike those found experimentally in 

S~(KT) 

1500 

I000 I 0 ~  

500 

/ -, 
- 85"K ~/ /'Y=(m--'~) 2 P 

. . . . . . . . . . . . .  - " - - T - ' ~ . .  8 / , /  . . . . . .  
0 I t t I I I ~ "- I I 1 / I / I I -- 

2 4  6 " " ~ , ~ .  ~ / , /  IZ 

-500 

Fig. 2. The real part of the self-energy (per unit activity and thermal energy) vs. a dimensionless 
momentum for two temperatures: the circles indicate the calculated points for T = 100~ 
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Fig. 3. The imaginary par t  o f  the self-energy (per unit activity and thermal energy) vs. a dimen- 
sionless momentum for two temperatures. 

helium II, but fails to yield the sound-wave part  of the spectrum. 7 The first order 
in the activity for the self-energy seems to exclude the propagation of sound waves. 
The imaginary part  S ~ behaves much more simply: it quickly reaches its asymptotic 
form, which is linear in p. Indeed, one can show easily for Eq. (17) that, for large 
momenta  p, the major contribution to the integral comes from large p', for which 
Imfp,(0) = p '~ /47r ,  where ~ is the constant limiting cross section for hard spheres a3~ 
(2rra 2) and this makes SI(p) linear in p for large momenta.  It is an interesting result 
that this asymptotic form seems to be good over most of  the range with some addi- 
tional fluctuations. Another result verified numerically was that in Eqs. (16) and (17) 
one obtains the same result (within numerical errors) in either the BE or the FD case, 
since we have been using the Boltzmann statistics limit as noted earlier: the pure 
exchange terms give zero contribution in the Boltzmann case. 

We now turn to the evaluation of density and pressure in Eqs. (13) and (14). 
This is a comparatively easy calculation: the only problem is to find the range of 
variables contributing to the integrals. For convergence reasons, we could not use 
the Boltzmann limit of the distributions in Eq. (13), so we used the FD (lower case) 
distribution to approximate the Boltzmann distribution. We used the following 
dimensionless form of our integrals for computations: 

n a  3 = V ' 2  ( m k T ) S / 2 ( a / h ) ~ z  ~ 

• f~Y2dYl(Y)f+~df~{-[~--Cr(~) -oo __ zR]2 q_ z~i2 ~ (19) 

7 This seems to raise the question of whether these oscillations may be due to the potential and not 
to BE condensation. 
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where Y -= (23/m)l/2p,  f2 = w / k T ,  R ( Y )  = S R / k T ,  I ( Y )  = S I / k T ,  and a is the hard- 
sphere diameter. Then, 

f lPa 3 = a3n(z ') dz ' / z '  (20) 
o 

The numerical evaluation of Eq. (19) was performed most easily by doing the 
D-integral first and by integrating from the center of the Lorentzian, i.e., ~?~ = 
(Y2/4) + z R ( Y ) ,  a certain number of half-widths z I ( Y )  in both directions: we finally 
settled an integrating over 30 half-widths in each direction with 600 mesh points over 
the total X) range. This gave us an accuracy well within 0.5 ~ .  Another check of the 
accuracy was made by obtaining numerically the correct ideal-gas limit (for z = 10-6). 
The ideal-gas limit ( z -+  0 +) of Eq. (19) is easily obtained and gives the standard 
result 

(na3)ioeal = (mkT/27r)3/2(a/h)3z. (21) 

The Y-integral, being much smoother, was handled with a mesh size A Y = 0.3 and 
up to Ymax = 10. 

Equation (20) for f iPa 3 was also evaluated numerically by Simpson's rule. 
The initial value (at z ---- 0) of the integrand cannot be evaluated numerically and 
is taken as given by Eq. (21), which is exact for z = 0. All other values of the integrand 
are, of course, based on the calculated values of na 3 as a function of  z. 

The results of our calculations at T = 100~ are given in Appendix B and in 
Figs. 4 and 5. The plot of na 3 vs. z in Fig. 4 has the expected shape as compared to 

Fig. 4. 
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Density vs. activity in the low-activity T-approximation for argon at 100~ 
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Fig. 5. Pressure vs. density (full curve) in the same model for argon at 100~ the circles indicate 
the computer-calculated points. The Beattie-Bridgeman ~17) equation of state (dashed curve) has 
also been plotted for T = 100~ 

similar plots. (16) The plot in Fig. 5 is obtained by eliminating z between n a  3 and ~ P a  3. 

On the same graph we have plotted the Beattie-Bridgeman equation of state (17) 
based on the experimental data for argon at T = 10G~ this equation is a semi- 
empirical, five-parameter equation which represents quite well the experimental data. 
We could not find any molecular-dynamics or similar computer calculations at 
100~ to compare with our calculated results. The comparison is thus more stringent 
between our calculated results and the Beattie-Bridgeman equation based on the 
experimental results. One sees that the agreement in Fig. 5 between our calculations 
and experimental data is quite good for the lowest densities and become less so as 
the density increases. The general shape of the gaseous equation of state is certainly 
represented by our theoretical calculations. Our calculations fail, however, to yield 
the liquid part of the isotherm. Our results seem to go into a phase transition, in the 
sense that na  3 increases very rapidly as a function of z and the P - n  curve tends to go 
over to a horizontal plateau which corresponds to the coexistence region. 

Finally, we discuss at some length how our calculations could be extended to 
larger z values. First, we note that we are interested, for molecular fluids, in z values 
less than or equal to unity (for which we have Bose-Einstein condensation for a 
Bose fluid.) Our calculations could be improved by including contributions to order 
z ~ in 2J(p, ~o + ie) used in Eqs. (6) and (7). These contributions would come from 
three sources: (1) the contributions of the poles and branch-point singularities of the 
T-matrix to Eq. (10); (2) the contribution of the "off-energy-shell" T-matrices in 
Eq. (12); (3) the effect of the three-particle terms in the self-energy of  Eq. (8), where 
G (~ is replaced by its first iteration G (1) with a self-energy given by (11). 

The first and third of the contributions above are relatively easy to evaluate. 
The second one is much more difficult since the general T-matrix of Eq. (9) looks 
difficult to obtain, at least in a closed-form solution. However, a partial-wave expan- 
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sion should be possible for this general T-matrix. These contributions should, of 
course, be included in an exact theory of the higher-order virial coefficients. 

Thus, in conclusion: (1) our theoretical results in the low-activity T-approxima- 
tion seem to reproduce quite well the equation of state in the gaseous phase, at 
T = 100~ (2) our results fail to yield the liquid part of the isotherm at 100~ 
this was to be expected from the low-activity approximation; (3) some simple analytical 
results are obtained in Appendix A which connect the Green's function theory to 
the simple lattice gas theories after considerable simplifications; (4) the main drawback 
in our calculations was the length of computing time involved: we spent nearly 3 hr of  
IBM 360/65 computing time to obtain the self-energy results, plus over an additional 
hour of same to obtain the na~-fiPa 3 results. 

A P P E N D I X  A .  S O H E  S I H P L E  A N A L Y T I C  E Q U A T I O N S  
I N  T H E  L O W - D E N S I T Y  T - A P P R O X I H A T I O N  

Equation (13) simplifies considerably if we take the limit as z S I - +  0 +, which 
we shall call the zero-width limit. (This corresponds to infinite lifetimes for the 
quasiparticles.) This new approximation is still consistent with the small-activity case, 
but there seems to be no good reason to neglect S ~ and not S R in our equations. 
If  we use the relation 

lira [E/(x ~ -I- e2)] = ~r ~(x) 
e-~O + 

we obtain easily 

n = z f [d3p/(2~r) 3] f doJ 3[oJ --  (p~/2m) --  zSR(p)1(e ~ T Z) -~ 

~- Z f [d3p/(2~) 3] exp{--f i[(p~/2m) + zSR(p)]} (A1) 

Equation (A1) has the expected form for the limiting case of Boltzmann statistics 
(z --+ 0). As usual, zSR(p) can be interpreted as the average energy gained by a particle 
of momentum p as the result of its collision with the other particles in the fluid (4) 
(in the present approximation). An equation similar to (A1) can be obtained for 
the pressure. The problem is how to eliminate the parameter z between these equations. 

Let us carry out the elimination of z in an approximate manner, i.e., for low 
densities. This will lead to simple equations of state which resemble closely the 
results of the lattice gas theories. (is) Following the usual procedure, (4) let us first 
differentiate Eq. (A1) at constant/3 and use dP = n d~: 

dn = fin dl~ - -  fi2e2B" dt~ 

• f [d3p/(2~') ~] exp{-- f l[(p2/2m) + e~SR(p)]} SR(p) 

= fl dP [1 -- (fl/n)z2(S ~ exp(--fiSRz))] (A2) 
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where 

( A )  = f [dSp/(2rr)a]A exp ( - -  flp~/2m) 

Unfortunately, we need z as a function of n to integrate Eq. (A2) into an equation 
relating P, n, and T. Let us, for simplicity, express z ~ to order n s from Eq. (A1) and 
let us also put z = 0 in the exponential function in (A2): this is a low-density approxi- 
mation to the square bracket in Eq, (A2). We write 

z 2 = n2(1) -2 + 2n3f l (1 ) -4(S  R) + ~)(n 4) 

and 

Thus, 

& = 5aP[1  - ( 5 ( s " > / O > = ) n  - ( 2 ~ < S " > = / ( l > g n  ~ + ""] (A3) 

where the parameter 

d P =  
k T  dn 

1 --  (n/no) - -  2(n2/no ~) 

2 k T d n  1 k T d n  + 
3 1 - -  (2n/no) 3 1 q- (n/no) 

(A4) 

or, by integration, 

P = - -nokT log[1  - -  (n/no)] (A8) 

Equation (AS), which diverges for n--+ no, is exactly the equation of state of the 
nortinteracting lattice gas. ~zS) 

Our results for the low-density T-matrix approximation seem thus to be equivalent 
to the simple lattice gas theories: this is interesting because it gives a connection 
between the more physical, although approximate lattice gas model ~18) and the more 
rigorous statistical mechanical theory of thermodynamic Green's functions. 

no = k T ( I ) 2 / ( S R )  (A5) 

Integration of Eq. (A4) with the initial condition P = 0 when n ----- 0 yields 

P = - - (nokT /3 ) log[1  -- 2(n/no)] + (nokT/3) log[1 § (n/no)] (A6) 

The equation of state (A6), which diverges when n --+ no~2, is very nearly the quasi- 
chemical equation of state/16,191 except for the last term: the parameter no~2 plays 
the role of a "close-packed" density. 

One obtains another result of the lattice gas theory if one uses in (A2) the ideal-gas 
limit for the square bracket, i.e., from (21), 

([3/n) z~(S R) ~ (/3(Sa)/(1) e) n ----- n/no (A7) 

where no is defined in (A5). Then, the low-density limit of (A2) becomes 

dn = fl dP[1 - -  (n/no)l 
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Table i 

z na 3 {3Pa 3 Peale, atm 

2 • 10 -v 0.000287 - -  - -  
6 • 10 -7 0.000861 0.000861 0.371 
1 • 10 .6 0.001435 0.001435 0.618 
3 • 10 -6 0.004325 0.00431 1.86 
5 • 10 -6 0.00730 0.00721 3.11 
7 • 10 -6 0.0114 0.01036 4.47 
9 • 10 -6 0.0163 0.0138 5.95 

1.1 • 10 -5 0.0241 0.0177 7.63 
1.3 • 10 -s 0.0397 0.0228 9.85 

A P P E N D I X  B. R E S U L T S  F O R  C A L C U L A T E D  E Q U A T I O N  O F  S T A T E  
O F  A R G O N  A T  100~ I N  T H E  S Q U A R E - W E L L  M O D E L  

The results shown in Table  I have been rounded  to three significant figures. 
The exper imenta l  results for  P are ob ta ined  f rom the best-f i t  Bea t t i e -Br idgeman  
equation.(  17~ 
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